US 09|2010

Magnetic Couplings

Partner for performance

A Global Presence For You

The RINGFEDER POWER TRANSMISSION GMBH was founded in 1922 in Krefeld, Germany to fabricate and promote Friction Spring technology. Today we have expanded our offerings to top power transmission and damping products. Innovative thinking sets us apart and allows us to develop progressive and economical solutions to support our customers.

Special applications require special solutions

Our extensive range of RINGFEDER POWER TRANSMISSION products can be applied to solve most applications. We don't just sell, but by understanding the individual requirements of our cus-

tomers (e.g. loads on the components, easy installation/removal capability and reduction of production costs) assist you in every step with innovative engineering to plan efficient and technically mature solutions.

Content

02 Pages Corporate Image

Basics

- 06 Information
- 10 Product Overview

Magnetic Couplings

- 12 Series HSV
- 14 Series HLV
- 16 Series HKD
- 18 Series MKD
- 20 Series MK/SV
- 22 Series MKS
- 24 Technical Information
- 25 Fax Inquiry
- 27 Delivery Program RINGFEDER POWER TRANSMISSION

All technical details and information are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right at all times to carry out modifications in the interests of technical progress. Upon the issue of this catalogue all previous brochures and questionnaires on the products displayed are no longer valid.

Basics

High-tech torque transmission

GERWAH-Magnetic Clutches do not transmit torques through mechanical connections like their mechanical counterparts but by using magnetic forces. We offer our magnetic clutches in a synchronous and a hysteresis version.

The synchronous clutch

Synchronous clutches transmit torque using magnetic forces which are generated by precise orientation of permanent magnets around a rotor, separated by an air gap. Depending on the size of the clutch, torques up to 9000 lb-in can be transmitted (higher torques upon request). When the rated torque setting is exceeded, it means the magnetic forces are exceeded and the clutch then slips, transmitting only a small residual torque. True to its name, the synchronous clutch only transmits torque when in synchronous running of the machine.

The hysteresis clutch

Similar to the synchronous clutch in function, this clutch has one half coated with a hysteresis lining instead of permanent magnets, allowing for simple polarity changes. When the clutch is overloaded and begins to slip, the hysteresis coating absorbs the constant changes in polarity due to the passing permanent magnets. This energy is then converted to heat which is subsequently released into the environment.

Magnetic Clutches – Advantages at a glance

Precise Torque Limiting

Up to 9000 lb-in (synchronous clutch) Higher torques upon request

- Easy and quickly adjustable torque infinitely adaptable to your requirements
- Even for extremely high rotational speeds
- Independent of age and operation

Unlimited number of overload cycles

- Absolutely wear-free
- Nominal torque always remains constant
- Maintenance free

Superior hygiene requirements

- No abrasion
- No equipment or external supplies necessary
- Also available in stainless steel

Superior transmission with application of hysteresis clutches

- Constant and soft slipping during torque limiting action
- "Soft starts" smooth starting torques
- The shafts to be connected can be operated with different torques
- Contact-free power transmission

Bottling plant

Applications

Selected fields of application suitable for GERWAH Magnetic Clutches

As safety coupling

GERWAH Magnetic Clutches offer excellent protection against overload. Wear-free and precise, they protect even sensitive applications and systems.

In bottle capping systems

Due to the technical superiority and elegant functionality compared to all other solutions, hysteresis clutches have established themselves world-wide in this field of application. Precise torque limiting, wear free operation, constant and jerk free behavior within the overload range as well being rust proof and not needing external power, are significant advantages. Especially our two series HSV and HLV have proven themselves as excellent for the use in bottling machines.

In wind-up and unwind applications

Within this field of application exact and constant torque limiting are crucial, which is fulfilled optimally by GERWAH Hysteresis Clutches.

As brakes

Gerwah Magnetic Clutches have proven themselves to be very suitable in braking applications such as a load for an engine test bench. Due to the no-contact design, the Gerwah hysteresis clutches offer fundamental advantages over friction based clutch designs.

Within the process technology

Due to their ability to transmit torque even by going through magnetic non-conducting materials, GERWAH Magnetic Clutches offer unique possibilities for sealing, e.g. in pumps.

Applications

- Bottle capping machines
- Wind-up and unwind systems
- Brakes
- Test procedures
- Packaging technology
- As safety clutch in e.g. extrusion plants. shredders. or similar
- Pump drives
- For "soft starts"
- As safety clutch with "smooth" overload transition behavior
- Food industry
- Cosmetic production
- Medical engineering

Bottling plant

Product Overview

Magnetic Hysteresis Clutches

Series HSV

- Compact construction
- Easy adjustable torque
- Completely stainless steel version possible
- Flexible attachment possibilities

Series HLV

- Narrow design
- Easy adjustable torque
- Completely stainless steel version possible
- Flexible attachment possibilities

Page 12

Page 14

Series HKD

- Flexible application
- Torque adjustable by hub submergence

This clutch consists of two halves and is not bearing-mounted!

Page 16

Product Overview

Magnetic Synchronous Clutches

Series MKD

- Low construction volume
- Flexible application
- Torque adjustable by hub submergence

This clutch consists of two halves and is not bearing-mounted!

Series MK/SV

- Short length
- Plug-in type
- Absolutely free of wear

This clutch consists of two halves and is not bearing-mounted!

Special version of hysteresis and synchronous clutches

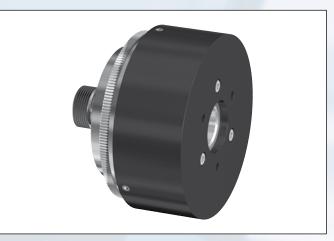
Series MKS

We design magnetic clutches according to your special requirements and are pleased to offer you our advice!

An example : Barrier can clutch MKS

Torque transmission into hermetically sealed containers is possible. A potential field of application would be pump drives. Page 18

Page 20


Page 22

Series HSV

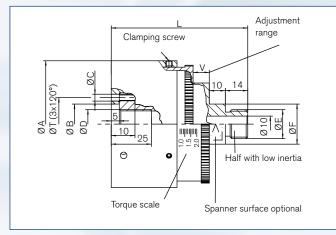
Standard version with aluminum housing, with stainless steel bearings, rare earth magnets, sintered hysteresis material

Dimensions

- øA = Outer diameter
- **øB** = Center diameter
- **øC** = Mounting bolt diameter
- **øD** = Thread diameter internal
- øE = Thread diameter external
- øF = Center diameter
- **øT** = Pitch circle diameter
- L = Total length
- Cb, Cf = Tolerances

Dimensions

Size	L	ØB	Сь	ØA	ØE	ØF	Cf	ØD	ØC	ØT	
	Inch	Inch	Inch	Inch	mm	Inch	Inch	mm	mm	Inch	
1	2.756	0.709	+0 -0.0007	2.874	M16 x 1.5	0.787		M16 x 1.5	М3	0.984	
2	3.346	0.984	+0	3.110	M18 x 1.5	0.984	+0 -0.0010	M18 x 1.5	M4	1.299	
4	3.346	1.181	-0.0010	4.134	M24 x 1.5	1.181		M24 x 1.5	M4	1.890	


Other dimensions on request

Ordering example: HSV 2a

Series	Size	Version	Further details*
HSV	2	а	XX

*e.g. stainless, modified torque

Series HSV

Sectional view

Technical Data

Technical Data

Т

J

Fax

V

- ME = Torque (adjustable); other torque values on request; specified torque ± 5% tolerance
- Pv = Max. power dissipation (thermally limited); power loss when using high temperature permanent magnets
- nmax = Max. mechanical rotating speed; depending on overload ratio and torque through max. dissipatable thermal power loss
 - = Operation temperature
 - = Moment of inertia
- Frad = Max. allowed forces radial
 - Max. allowed forces axial
 - Adjustment range

Size	V	ME Version a	ME Version b	Pv	т	Mmax	Frad	Fax	J _{outer}	J _{inner}	Weight
	Inch	lb-in	lb-in	w	٥F	rpm	lbs	lbs	lb-in ²	lb-in ²	lbs
1	0.315	3.5-8.9	1.8-4.4	15 (20)		4000	45	34	1.23	0.44	1.8
2	0.394	7.1-17.7	0.9-11.5	23 (30)	32-104	3500	67	45	2.12	0.85	2.6
4	0.394	14.2-35.4	1.8-23	30 (40)		3000	90	56	5.54	2.70	4.2

Range of applications

- Bottle capping machines
- Wind up and unwind systems
- Brakes
- Test engineering

Series HLV

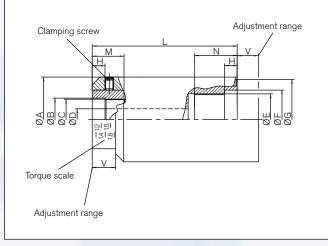
Standard version with aluminum housing, with stainless steel bearings, rare earth magnets, sintered hysteresis material

Dimensions

- = Centering diameter øΒ = Counterbore diameter øC
- øD
- = Through bore diameter øΕ = Mounting bolt diameter
- øF = Centering diameter
- øG = Basic dimension
- н = Centering bore depth
- = Total length; for the assembly the total length L (with L + V) must be considered
- М = Counterbore depth
- Ν = Max. thread engagement
- **Cb**, **Cf** = Tolerances

Dimensions

Size	L	ØB	Сь	ØG	M	N	ØA	H	ØE	ØF	Cf	ØD	ØC	
	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	mm	Inch	Inch	Inch	mm	
1	3.543	1.181		1.969	0.787	0.787	2.165	0.315	M27 x 1.5	1.181		0.394	M27 x 1.5	
2	4.449	1.378	+0.001 -0	2.165	0.984	0.984	2.362	0.394	M32 x 1.5	1.378	+0.001 -0	0.591	M32 x 1.5	
4	5.354	1.575		2.933	1.142	1.575	3.150	0.472	M38 x 1.5	2.165		0.787	M38 x 1.5	


Other dimensions on request

Ordering example: HLV 2

Series	Size	Further details*
HLV	2	XX

* e.g. stainless, modified torque

Series HLV

Sectional view

Technical Data

Technical Data

Т

J

v

- ME = Torque (adjustable); other torque values on request; specified torque ± 5% tolerance
- Pv = Max. power dissipation (thermally limited); power loss using high temperature permanent magnets
- nmax = Max. mechanical rotating speed; depending on overload ratio and torque through max. dissipatable thermal power loss
 - = Operation temperature
 - Moment of inertia
- Frad = Max. allowed forces radial; Frad applied in max. 40 mm (1.58 in) from clutch end
- Fax = Max. allowed forces axial
 - = Adjustment range

Size	V	Me Ib-in	Pv W	T °F	nmax	Frad	Fax	J _{Outer rotor} Ib-in ²	J _{Inner rotor} Ib-in ²	Weight Ibs
	inen	10-111	vv		ipin	105	105			105
1	0.591	3.5-8.9	18 (25)		4000	34	22	1.47	0.31	2.6
2	0.709	6.2-17.7	25 (35)	32-104	3500	45	34	2.97	0.72	3.5
4	0.787	13.3-35.4	40 (55)		3000	56	45	9.16	1.88	7.1

Range of applications

- Bottle capping machines
- Packaging technology

Series HKD

Standard version with rare earth magnets and sintered hysteresis material

Dimensions

- øA = Outer diameterøB = Clamp collar ODøD1 = Bore diameter
- øD2 = Bore diameter
- **C** = Clamp collar width
- **K** = Clamp screw centerline
- I = Clamping screw
 - Minimum coupling length (will vary with adjustment range V)
- C1, C2 = Tolerances

Dimensions

L

Size	L	ØB	•	к	ØA	Ø D1	C1	Ø D2	C2	с	
	Inch	Inch	mm	Inch	Inch	Inch	Inch	Inch	Inch	Inch	
2	2.165	0.984	MЗ	0.354	1.220	0.1181-0.3937	+0.0005 -0	0.1181-0.3937	+0.0005 -0	0.323	
4	2.283	1.260	M4	0.453	1.496	0.2362-0.6299	+0.0006 -0	0.2362-0.6299	+0.0006 -0	0.394	
10	2.283	1.575	M4	0.610	1.811	0.2362-0.7480	+0.0006 -0	0.2362-0.7480	+0.0006 -0	0.394	
18	3.071	1.772	M5	0.689	2.008	0.3937-0.7874	+0.0007 -0	0.3937-0.7874	+0.0007 -0	0.472	
30	3.465	1.850	M6	0.630	2.205	0.3937-0.7874	+0.0007 -0	0.3937-0.7874	+0.0007 -0	0.591	
60	4.213	2.244	M8	0.787	2.717	0.5511-0.9055	+0.0007 -0	0.5511-0.9055	+0.0007 -0	0.768	
150	5.118	2.677	M10	0.945	3.307	0.787-1.102	+0.001 -0	0.787-1.102	+0.001 -0	0.846	

Other dimensions on request


Ordering example: HKD 30

Series	Size	Ø D1	Ø D2	Further details*
HKD	30	15	12	XX

*e.g. stainless, modified torque

Series HKD

This coupling consists of two separate halves and must be supported by the customer!

Technical Data

Mmax	=	Torque: Other torque values on request; torque adjustable by hub submergence; specified torque ± 5% tolerance
Pv	=	Max. power dissipation (thermally limited)
J	=	Moment of inertia
∆Kr	=	Max. approved misalignment radial; higher misalignments on request
n max	=	Max. mechanical rotating speed; max. permanent slip speed limit depends on frequency and duration of slipping
MA	=	Tightening torque of clamping screws
v	=	Adjustment range

Sectional view

Technical Data

Size	v	∆ Kr	Mmax	Ma	Птах	Pv	Outer rotor Weight	Inner rotor Weight	J _{outer}	J _{inner}
	Inch	Inch	lb-in	lb-in	rpm	W	lbs	lbs	lb-in ²	lb-in ²
2	0.787	0.008	0.9	18	10000	4	0.3	0.2	0.062	0.017
4	0.787	0.008	1.8	27	9000	5	0.3	0.2	0.137	0.068
10	0.787	0.008	3.5	27	8000	7	0.4	0.4	0.239	0.137
18	1.181	0.008	8.0	53	7000	12	0.6	0.6	0.478	0.273
30	1.181	0.008	11	106	6000	14	0.7	0.6	0.683	0.376
60	1.575	0.008	22	266	5000	20	1.5	1.1	2.973	1.948
150	1.969	0.008	44	443	4000	30	3.7	3.5	6.150	4.442

Range of applications

- As brake for "soft starts"
- As safety clutch with "smooth" overload transition behavior

Series MKD

Standard version made with rare earth magnets

Dimensions

- øA = Outer diameterøB = Clamp collar OD
- **øD1** = Bore diameter
- **øD2** = Bore diameter
- **C** = Clamp collar width
- **K** = Clamp screw centerline
- I = Clamping screw
 - Minimum coupling length (will vary with adjustment range V)

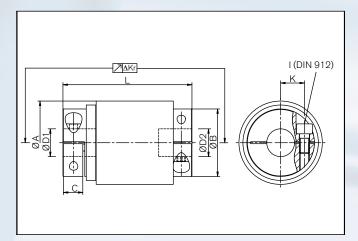
C1, C2 = Tolerances

Dimensions

L

Size	L	ØВ	I	к	ØA	Ø D1	C1	Ø D2	C2	с	
	Inch	Inch	mm	Inch	Inch	Inch	Inch	Inch	Inch	Inch	
2	2.165	0.945	МЗ	0.354	1.220	0.1181-0.3937	+0.0005 -0	0.1181-0.3937	+0.0005 -0	0.323	
4	2.283	1.260	M4	0.453	1.496	0.2362-0.6299	+0.0006 -0	0.2362-0.6299	+0.0006 -0	0.394	
10	2.283	1.575	M4	0.610	1.811	0.2362-0.7480	+0.0006 -0	0.2362-0.7480	+0.0006 -0	0.394	
18	3.071	1.772	M5	0.689	2.008	0.3937-0.7874	+0.0007 -0	0.3937-0.7874	+0.0007 -0	0.472	
30	3.465	1.850	M6	0.630	2.205	0.3937-0.7874	+0.0007 -0	0.3937-0.7874	+0.0007 -0	0.591	
60	4.213	2.244	M8	0.787	2.638	0.5511-0.9055	+0.0007 -0	0.5511-0.9055	+0.0007 -0	0.768	
150	5.118	2.677	M10	0.945	3.307	0.787-1.102	+0.001 -0	0.787-1.102	+0.001 -0	0.846	
300	5.748	3.780	M12	1.260	4.528	1.260-1.575	+0.001 -0	1.260-1.575	+0.001 -0	1.024	

Other dimensions on request


Ordering Example: MKD 30

Series	Size	Ø D1	Ø D2	Further details*
MKD	30	15	12	XX

* e.g. stainless, modified torque

Series MKD

This coupling consists of two separate halves and must be supported by the customer!

Technical Data

Mmax	 Torque; other torque values on request; torque adjustable by extending hub; specified torque ± 5% tolerance
CTdyn	= Dynamic torsional stiffness
J	= Moment of inertia
∆Kr	 Max. approved misalignment radial; Higher misalignments on request
nmax	= Max. mechanical rotating speed
MA	= Tightening torque of clamping screws

- = Tightening torque of clamping screws
- = Adjustment range

Sectional view

Technical Data

Size	v	∆ Kr	CTdyn	Mmax	Ма	Пmax	Outer rotor Weight	Inner rotor Weight	J _{outer}	J _{inner}
	Inch	Inch	lb-in/rad	lb-in	lb-in	rpm	lbs	lbs	lb-in ²	lb-in ²
2	0.787	0.016	27	11	18	10000	0.2	0.2	0.06	0.017
4	0.787	0.016	89	22	27	9000	0.3	0.2	0.13	0.048
10	0.787	0.016	221	44	27	8000	0.4	0.4	0.27	0.14
18	1.181	0.016	398	80	53	7000	0.6	0.5	0.48	0.24
30	1.181	0.016	735	115	106	6000	0.8	0.6	0.72	0.34
60	1.575	0.016	2213	266	266	5000	1.5	1.2	2.05	1.03
150	1.969	0.016	5399	531	443	4000	4.2	3.1	6.15	5.47
300	2.362	0.016	20355	1328	797	3000	7.5	6.8	22.89	17.08

V

Range of applications

- As safety clutch
- Other applications that require high torque demands and limited dimensions

Permanent Magnetic Safety Clutch

Series MK/SV

This coupling consists of two separate halves and must be supported by the customer!

Dimensions

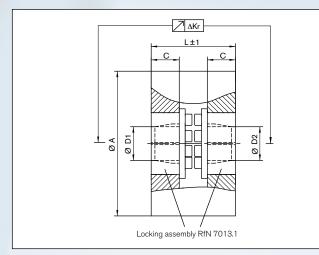
øA =	Outer diameter
------	----------------

- **øD1** = Bore diameter
- **øD2** = Bore diameter
- **C** = Max. shaft insertion length
- L = Minimum coupling length (will vary with adjustment range V)

Dimensions

Size	L ±1	Ø A	Standard Ø D1; D2	Ø D1	Ø D2	C	
100 a	2.953	3.701	0.787	0.787-0.984	0.787-0.984	1.220	
100 b	4.528	3.701	0.787	0.787-0.984	0.787-0.984	1.220	
200 a	2.953	5.079	1.181	0.787-1.575	0.787-1.575	1.220	
200 b	4.528	5.079	1.181	0.787-1.575	0.787-1.575	1.220	
500 a	2.953	7.441	1.378	0.787-1.575	0.787-1.575	1.220	
500 b	4.528	7.441	1.378	0.787-1.575	0.787-1.575	1.220	

Other dimensions on request


Ordering Example: MK/SV 200b

WIR/ 3V 2000

Series	Size	Version	Further details*	
MK/SV	200	b	XX	

* e.g. stainless, modified torque

Series MK/SV

Technical Data

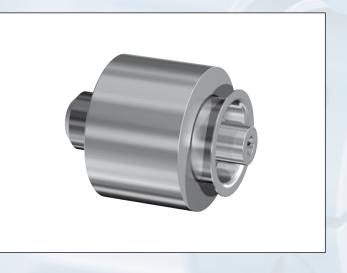
М	 Torque linearly adjustable by using rotor insertion depth; specified torque ± 5% tolerance
n max	= Max. mechanical rotating speed
т	= Operation temperature
$\Delta \mathbf{K} \mathbf{r}$	= Max. approved radial misalignment
J	= Moment of inertia
MA	= Tightening torque of clamping screws
V	= Adjustment range

Sectional view

Technical Data

Size	v	т	∆ Kr	Mmax	ΜΑ	N max	J _{outer}	J _{inner}	Weight
	Inch	°F	Inch	lb-in	lb-in	rpm	lb-in ²	lb-in ²	lbs
100 a	1.575		0.016	443	159	6000	9.2	3.4	6.8
100 b	3.150		0.016	885	159	6000	12.6	5.5	8.8
200 a	1.575	00 1 40	0.016	885	159	4000	31.1	14.0	13
200 b	3.150	32-140	0.016	1770	159	4000	41.7	21.2	16
500 a	1.575		0.016	2213	159	3000	127.1	72.8	26
500 b	3.150		0.016	4425	159	3000	161.6	101.5	32

Range of applications


 As safety clutch in extrusion plants, shredders, or similar

Series MKS

Inner and outer rotor have to be supported by the customer. Separate barrier can on request!

Dimensions

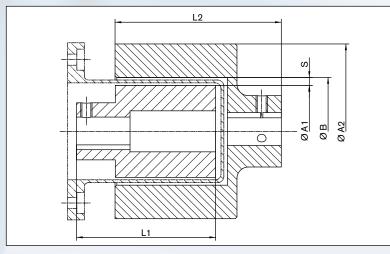
- øA1 = Outer diameter inner rotor
- øA2 = Outer diameter outer rotor
- **øB** = Inner diameter outer rotor
- L1 = Length inner rotor
- **L2** = Length outer rotor
- **S** = Air gap; Other air gap dimensions on request

Dimensions

Size	L1 L2		Ø A2	Ø A1	ØB	s	
	Inch	Inch	Inch	Inch	Inch	Inch	
12	2.913	3.937	3.858	1.811	2.362	0.276	
20	2.283	2.362	4.331	2.795	3.150	0.177	
24	3.071	3.661	3.858	2.047	2.362	0.157	
50	2.953	2.953	5.709	4.094	4.606	0.256	
180	3.937	4.331	6.693	5.098	5.531	0.217	

Listed versions are examples for customized solutions.

We can design your MKS coupling according to your requirements and will be happy to advise you.


Ordering example: MKS

Series	Size	Further details*
MKS	50	XX

* e.g. stainless, modified torque

Series MKS

Technical Data

Т

۷

- **Mmax** = Torque; other torque values on request; torque linearly adjustable by rotor insertion depth; specified torque ± 5% tolerance
 - = Operation temperature
- = Max. operation temperature, higher Tmax temperatures on request
 - = Adjustment range

Sectional view

Technical Data

Size	V	M _{max} Ib-in	T	T _{max} temporary °F	Weight Outer rotor Ibs	Weight Inner rotor Ibs
12	1.575	106	°F	F	6.0	1.1
12	1.070	100		32-248 302	0.0	1.1
20	1.772	177			4.0	3.1
24	1.969	212	32-248		6.0	1.5
50	2.362	443			6.4	4.6
180	3.543	1593			11.5	12.1

Drive side

Output side

Range of applications

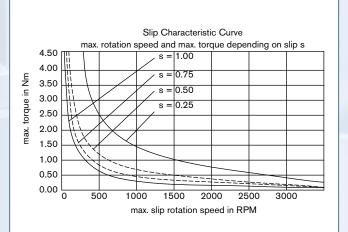
- As torque transmission in hermetically sealed containers
- Application as a pump drive

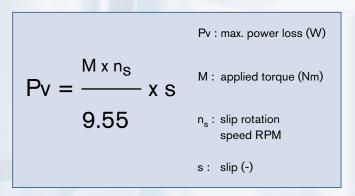
Technical Information

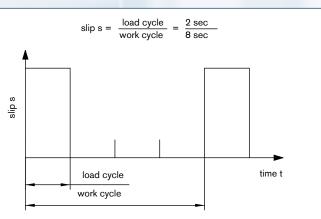
Magnetic clutches explanation

At overload status the hysteresis clutches and brakes slip. The losses (from slip rotation speed and torque) are transformed into heat. If the dissipation power exceeds the quantity of heat which can be conducted to the environment, the clutch (brake) will overheat. With the formula on the right side it is possible to check if the chosen max. power loss of the clutch (brake) is sufficient for the desired operation.

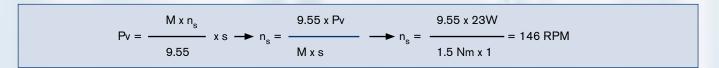
Example 1:


A hysteresis brake series HSV 2 (Pvmax = 23 W) is applied as a winder brake (s = 1). The applied torque shall be 1.5 Nm. Which rotation speed is allowed continuously without overheating the brake? The brake can slip continuously at a rotation speed of 146 RPM. Starting out from this result the average paper speed (dependent on the diameter of the paper roll) can now be calculated.




- English Unit Watts = M (lb-in) x n x 0.0118
- Metric Unit Watts = M (Nm) x n x 0.104
- 1 Nm = 8.85 Lb-in

Example 2:


A hysteresis clutch series HSV 4a is applied in a bottle capping machine. One working cycle lasts 8 seconds. 6 seconds of this the clutch is engaged. 2 seconds the inner and the outer part are rotating relative to each other. These 2 seconds are the actual load cycle of the clutch – the clutch is slipping.

With an applied torque of M = 4 Nm and a slipping rate of 25% (s = 0.25) the continuously allowed rotation speed is n = 287 RPM (see formula and diagram)!

Fax Inquiry

On this page you can explain the application of a magnetic clutch and we will propose our solution. Please send this page to:

USA and RI Mexico:	NGFEDER F	POWER	TRANSMISS	SION USA C	ORPORATION	· FAX:+1 (201) 664-6053					
1. Applicati Planned use of		nachine. m	achine group or p	lant):							
2. Type of Attachment (please check)											
Key	Thread	Shrink Disc	Locking As	ssembly	Clamping Hub	Other (please enclose drawing)					
3. Dimensi	ons										
Leng	th (inch)		Bore size D_1 (incl	ı)	Ø (inch)	Bore size D ₂ (inch)					
4. Drive											
Drive power	P =	НР	Nominal torque	of the drive	Mt _{nom} =	LB-IN					
Input speed	n =	RPM	Peak torque of t	he drive	Mt _{max} =	LB-IN					
5. Mass Mo	oment of Ine										
On the drive si	de JA =	LB	-IN ²	On the dr	iven side J _L =	LB-IN ²					
6. Environr	nental Influe	ences									
Temperature in	the area of the	coupling	Temp =	°F Special	materials (e.g. stainl	ess steel)					
Are there any in	mpacts on the lo	ad side?	no	slight	mediur	n heavy					
other. special i	nfluences										
7 Exporto	d Quantities					8. Target Price					
						.					
Production	Project		Repair	Number of	of items/p.a.	\$/each					
Please send y	our offer to:										
Company				Atter	ntion						
Address											
Phone				Fax							
E-mail											

Notes

Delivery Program

Locking Devices

Locking Assemblies

Shrink Disc[®]

Smart-Lock

Friction Springs

Special Solutions

Shaft Couplings

DEFORM plus[®] DEFORM plus[®] R

Locking Assemblies

Fluid Elastomeric Damper

Flange Couplings

Couplings

Magnetic Couplings

RING-flex[®] – torsionally rigid Disc Couplings

Metal Bellows Couplings

Servo-Insert Couplings

Line Shafts

RINGFEDER POWER TRANSMISSION USA CORPORATION · 165 Carver Avenue, P.O. Box 691 Westwood, NJ 07675, USA Toll Free: +1 888 746-4333 · Phone: +1 201 666 3320 · Fax: +1 201 664 6053 · E-mail: sales.usa@ringfeder.com/sales.usa@gerwah.com

www.gerwah.com